1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722
//! Large unsized integers (specialized to our *allocation-free* purposes). //! //! The internal representation is in terms of little-endian machine words. //! //! This specification of types was chosen after a few iterations of the options //! within the limitations of [`min_const_generics`][min-const-generics]. //! //! One advantage it has is that [`Short`] and [`Long`] integers (hence also short/long //! [`crate::Montgomery`], etc.) can share implementations. //! //! [min-const-generics]: https://blog.rust-lang.org/2021/03/25/Rust-1.51.0.html#const-generics-mvp #![allow(unstable_name_collisions)] // for Bits::BITS use core::{cmp::Ordering, mem::{align_of, size_of}, ops::{Deref, DerefMut}}; use ref_cast::RefCast; use zeroize::Zeroize; use crate::{Digit, Error, Result}; mod trait_implementations; /// The unstable `{number}::BITS` implementations. /// /// Cf. <https://github.com/rust-lang/rust/pull/76492>. pub trait Bits { const BITS: usize; // const BYTES: usize; } /// Several [`Digit`]s attach to a limb. pub type Limb<const D: usize> = [Digit; D]; /// Multi-precision unsigned integer with at most $D + E$ digits (places) – two [`Limb`]s. /// /// Workaround type for limitations of const generics on stable; /// the interesting cases are: /// - [`Short`], where $E = 0$, and /// - [`Long`], where $D = E$. /// /// The former is used for RSA prime pairs $(P, Q)$, the latter for RSA public keys $N = PQ$. /// /// Mnemonics: `D` for digits, `E` for "extra" digits. // // possible synonyms: Duplex, Twofold, (Dual) // goal is not to evoke "twin", "double", which would imply both limbs are the same #[repr(C)] #[derive(Clone, Eq, Zeroize)] pub struct Unsigned<const D: usize, const E: usize> { // this is a kind of "dual number" lo: Limb<D>, hi: Limb<E>, } #[cfg(feature = "ct-maybe")] impl<const D: usize, const E: usize> subtle::ConditionallySelectable for Unsigned<D, E> { fn conditional_select(a: &Self, b: &Self, c: subtle::Choice) -> Self { let mut selected = Unsigned::zero(); for (s, (a, b)) in selected.iter_mut().zip(a.iter().zip(b.iter())) { *s = Digit::conditional_select(a, b, c); } selected } } // pub type Unsigned<const D: usize, const E: usize> = Array<D, E, 1>; #[repr(transparent)] #[derive(Clone, Debug, RefCast)] pub struct Odd<const D: usize, const E: usize>(pub(crate) Unsigned<D, E>); impl<const D: usize, const E: usize> Odd<D, E> { pub fn as_unsigned(&self) -> &Unsigned<D, E> { &self.0 } pub fn into_unsigned(self) -> Unsigned<D, E> { self.0 } } #[repr(transparent)] #[derive(Clone, Debug, RefCast)] /// Unsigned numbers with both their top and bottom bits set – highly convenient for modular /// arithmetic! /// /// In particular, they are odd. But also, $n \ge 2^{m - 1}$, with strict inequality /// by oddness. /// /// As described in [Incomplete reduction in modular arithmetic (2002)][yanik-savas-koc], /// it is not necessary to reduce fully modulo `n` while calculating modular arithmetic. /// Instead, we can reduce modulo $2^m$, and only "fully" reduce when so desired. /// /// Their arguments apply to non-prime moduli also, and the "convenient" ones have the properties, /// in their terminology, that $I = 1$ and $J = 2$, hence $F = 2^m - p$ and $G = 2p - 2^m$. /// Moreover (!!!), the last case/reduction in their modular addition / subtraction never /// occurs. /// /// E.g., in addition, we have $F = 2^m - n < 2^m - 2^{m - 1} = 2^{m-1}$, and so /// $T := S + F < (2^m - 2) + 2^{m - 1} < 2^{m - 1}$. /// /// [yanik-savas-koc]: https://api.semanticscholar.org/CorpusID:17543811 pub struct Convenient<const D: usize, const E: usize>(pub(crate) Odd<D, E>); impl<const D: usize, const E: usize> Convenient<D, E> { pub fn as_odd(&self) -> &Odd<D, E> { &self.0 } pub fn into_odd(self) -> Odd<D, E> { self.0 } pub fn as_unsigned(&self) -> &Unsigned<D, E> { &self.0.0 } pub fn into_unsigned(self) -> Unsigned<D, E> { self.0.0 } } #[repr(transparent)] #[derive(Clone, Debug, RefCast)] /// Prime number (passing primality tests); convenient by definition. pub struct Prime<const D: usize, const E: usize>(pub(crate) Convenient<D, E>); impl<const D: usize, const E: usize> Prime<D, E> { pub fn as_convenient(&self) -> &Convenient<D, E> { &self.0 } pub fn into_convenient(self) -> Convenient<D, E> { self.0 } pub fn as_odd(&self) -> &Odd<D, E> { &self.0.0 } pub fn into_odd(self) -> Odd<D, E> { self.0.0 } pub fn as_unsigned(&self) -> &Unsigned<D, E> { &self.0.0.0 } pub fn into_unsigned(self) -> Unsigned<D, E> { self.0.0.0 } } /// [`Unsigned`] with equal limbs (e.g., public key). If only we had `[T; 2*D]`... pub type Long<const D: usize> = Unsigned<D, D>; // duplex with equal limb size /// [`Unsigned`] with only one limb (e.g., private prime). Short only in comparison to [`Long`]. pub type Short<const D: usize> = Unsigned<D, 0>; // duplex with empty hi limb pub type ShortOdd<const D: usize> = Odd<D, 0>; pub type ShortConvenient<const D: usize> = Convenient<D, 0>; pub type ShortPrime<const D: usize> = Prime<D, 0>; // DO NOT DO THIS // // it's way too unsafe, can call self.padded_number() on result // //impl<const D: usize> Short<D> { // /// TODO. // /// // /// Idea: Can implement truncating arithmetic on Unsigned<D, E>, // /// and where needed, instead do: // /// // /// let (p, q): (Short<D>, Short<D>) = generate_primes(); // /// let n: Product<D, D> = p.as_long() * q.as_long() // <- using Mul for &Unsigned<D, D> // /// // /// to use "long" arithmetic on short unsigned numbers. // pub fn as_long(&self) -> &Long<D> { // unsafe { &*(self as *const _ as *const _) } // } //} #[repr(C)] #[derive(Clone, Eq/*, Zeroize*/)] /// Array of [`Unsigned`]. pub struct Array<const D: usize, const E: usize, const L: usize> { lo: [Limb<D>; L], hi: [Limb<E>; L], } // double duplex? /// Big enough to fit the product of two [`Unsigned`]. pub type Product<const D: usize, const E: usize> = Array<D, E, 2>; impl <const D: usize> Product<D, 0> {//Array<D, 0, 2> { pub fn into_long(self) -> Long<D> { Unsigned::<D, D> { lo: self.lo[0], hi: self.lo[1] } } pub fn as_long(&self) -> &Long<D> { unsafe { &*(self as *const _ as *const _) } } } /// Something similar to a `Vec<u32>`, without allocations. /// /// The dereferenced slice is treated as little-endian digits of a big unsigned integer; /// this slice must be of length `Self::DIGITS`. /// /// There is no need to "extend" the allocation as in, say, `heapless`. /// Simply write to the desired index / slice (via DerefMut). /// /// In a previous version of this trait, only the significant digits (up until the leading digit) /// were dereferenced. To meet constant-time requirements, this was changed. /// /// Current implementations are (with const generic usize parameters): /// - `Unsigned<D, E>` /// - `Array<D, E, L>` /// /// Of actual interest are Long (=`Unsigned<D, D>`) and Short (=`Unsigned<D, 0>`) numbers, /// where "Short" is tongue-in-cheek. /// /// A lot of this dance could be skipped if only sums of const generic usizes were /// considered const (which they are not in Rust 1.51's `min_const_generics`. /// /// All we really want is to have two "Short" primes $P, Q$, and their "Long" product $N = PQ$. /// /// /// ## Implementing this trait /// /// The type should consist of non-trivial consecutive Digit "plain old data", and be `Clone + Debug + Default`. /// /// Then the following is all that is needed: /// ```rust,ignore /// impl Deref for T { /// type Target = [Digit]; /// fn deref(&self) -> &Self::Target { /// Number::deref(self) /// } /// } /// impl DerefMut for T { /// fn deref_mut(&mut self) -> &mut Self::Target { /// Number::deref_mut(self) /// } /// } /// unsafe impl Number for T {} /// impl NumberMut for T {} /// ``` // Not a huge fan of "sealing", but we could do it. // mod sealed { // pub trait Number {} // impl<const D: usize, const E: usize, const L: usize> Number for crate::numbers::Array<D, E, L> {} // impl<const D: usize, const E: usize> Number for crate::Unsigned<D, E> {} // impl<T: Number> Number for crate::arithmetic::Wrapping<T> {} // } pub unsafe trait Number: /*sealed::Number +*/ Deref<Target = [Digit]> + Clone + core::fmt::Debug + Default { // + PartialEq + PartialOrd { /// The number of bits that fit in this number. const BITS: usize = core::mem::size_of::<Self>() * 8; #[deny(const_err)] /// The number of digits that fit in this number. /// /// There are compile-time checks that alignment and size of implementing types are compatible (i.e., multiples) /// with those of the digit type. If not, there are error messages of the form /// ``attempt to compute `0_usize - 1_usize`, which would overflow``. const DIGITS: usize = size_of::<Self>() / size_of::<Digit>() // check that size of self is multiple of size of digit + ((size_of::<Digit>() * (size_of::<Self>() / size_of::<Digit>()) == size_of::<Self>()) as usize - 1) // check that alignment of self is multiple of alignment of digit + ((align_of::<Digit>() * (align_of::<Self>() / align_of::<Digit>()) == align_of::<Self>()) as usize - 1) ; /// The significant digits of the number (little-endian). fn significant_digits(&self) -> &[Digit] { let l = self.iter() .enumerate().rev() .find(|(_, &x)| x != 0) .map(|(i, _)| i + 1) .unwrap_or(0); &self[..l] } /// The last non-zero digit of the number. fn leading_digit(&self) -> Option<Digit> { self.iter() .rev() .find(|&&x| x != 0) .copied() } /// Embed in number with `D + E` digits, if possible. /// /// Not expressable as `TryInto`, as it would clash with blanket implementations, /// e.g. for Unsigned<X> with D = X. fn to_unsigned<const D: usize, const E: usize>(&self) -> Result<Unsigned<D, E>> { let digits = self.significant_digits(); if digits.len() <= D + E { Ok(Unsigned::<D, E>::from_slice(digits)) } else { Err(Error) } } ///// Panics iff [`Self::try_to_unsigned`] fails. ///// ///// Internal use of this embedding of abstract `Number`s in `Unsigned`s never ///// actually panics, bar implementation errors. //fn to_unsigned<const D: usize, const E: usize>(&self) -> Unsigned<D, E> { // self.try_to_unsigned().unwrap() //} fn zero() -> Self { Self::default() } fn is_zero(&self) -> bool { self.significant_digits().is_empty() } fn is_one(&self) -> bool { self.is_digit() && self[0] == 1 } fn is_digit(&self) -> bool { self.significant_digits().len() <= 1 } fn is_odd(&self) -> bool { self.get(0).map(|&x| x & 1 != 0).unwrap_or(false) } /// This is *little endian* ordering, as opposed to the default /// ordering on arrays and slices! /// /// In other words, we start comparing at the leading digits. fn cmp(&self, other: &impl Number) -> Ordering { let l = self.significant_digits(); let r = other.significant_digits(); // #[cfg(test)] // println!("lhs has {}, rhs has {}", l.len(), r.len()); // #[cfg(test)] // println!("lhs = {:x?}", &l); // #[cfg(test)] // println!("rhs = {:x?}", &r); match l.len().cmp(&r.len()) { Ordering::Equal => {} not_equal => return not_equal, } for (x, y) in l.iter().zip(r.iter()).rev() { match x.cmp(&y) { Ordering::Equal => (), not_equal => return not_equal, } } Ordering::Equal } fn eq(&self, other: &impl Number) -> bool { self.significant_digits() == other.significant_digits() } fn deref(&self) -> &[Digit] { unsafe { core::slice::from_raw_parts(self as *const _ as _, Self::DIGITS) } } fn deref_mut(&mut self) -> &mut Self::Target { unsafe { core::slice::from_raw_parts_mut(self as *mut _ as _, Self::DIGITS) } } } // Fails to compile! // // #[derive(Clone, Debug, Default)] // pub struct Fake(u16); // impl Deref for Fake { // type Target = [Digit]; // fn deref(&self) -> &Self::Target { // Number::deref(self) // } // } // impl Number for Fake {} /// Mutable access to a [`Number`]. pub trait NumberMut: Number + DerefMut { fn from_slice(slice: &[Digit]) -> Self { // repeat implementation, so errors show the incompatible slice lengths. let mut owned = Self::default(); owned[..slice.len()].copy_from_slice(slice); owned } fn try_from_slice(slice: &[Digit]) -> Result<Self> { if slice.len() > Self::DIGITS { Err(Error) } else { let mut owned = Self::default(); owned[..slice.len()].copy_from_slice(slice); Ok(owned) } } fn from_bytes(bytes: &[u8]) -> Self { debug_assert!(Self::BITS >= 8*bytes.len()); let mut owned = Self::default(); let owned_bytes: &mut [u8] = unsafe { core::slice::from_raw_parts_mut(&mut owned[0] as *mut _ as _, Self::BITS / 8) }; let offset = owned_bytes.len() - bytes.len(); owned_bytes[offset..].copy_from_slice(bytes); let mut reversed = Self::default(); let l = owned.len(); for i in 0..l { reversed[Self::DIGITS - i - 1] = Digit::from_be(owned[i]); } reversed } fn set_zero(&mut self) { self.fill(0) } fn one() -> Self { let mut one = Self::default(); one[0] = 1; one } /// Swap endianness of digits in Self and, if the platform is little-endian, /// endianness of bytes within digits. fn swap_order(self) -> Self { let mut swapped = Self::zero(); let l = self.len(); for i in 0..l { // "On big endian this is a no-op. On little endian the bytes are swapped." swapped[l - i - 1] = Digit::from_be(swapped[i]); } swapped } fn random(rng: impl rand_core::CryptoRng + rand_core::RngCore) -> Self { let mut random = Self::default(); let mut rng = rng; rng.fill_bytes(unsafe { core::slice::from_raw_parts_mut(&mut random[0] as *mut _ as _, Self::BITS / 8) }); random } } // /// This datum has multiple limbs, and they're all differently sized ;) // /// All the same, its digits have an order: $[a_0, a_1,... a_{A-1}, b_0, ... c_{C - 1}]$. // pub struct Limbs<const A: usize, const B: usize, const C: usize, const D: usize> { // a: [Digit; A], // b: [Digit; B], // c: [Digit; C], // d: [Digit; D], // } // The following does not work. // // The problem is a) that WordsMut(&mut [u32]) is not a "place expression", // so can't do on-the-fly wrapping like `Words(&mut q[j..]) += &other`. // // b) Index/IndexMut with ranges don't seem to work outside builtin [T] and str // types, as IndexMut shares the "Output" type with Index, whereas // Words(&slice) and WordsMut(&mut slice) are different. // //pub struct Words<'a>(pub &'a [Digit]); ///// Not sure if this type should be made prominent. ///// ///// Current use case is implementing AddAssign on a sub-range of an Unsigned, ///// while DerefMut's Output of [u32] (and hence ranges thereof) is foreign. //pub struct WordsMut<'a>(pub &'a mut [Digit]); //impl<'a> From<&'a mut [Digit]> for WordsMut<'a> { // fn from(digits: &'a mut [Digit]) -> Self { // Self(digits) // } //} unsafe impl<const D: usize, const E: usize> Number for Unsigned<D, E> {} impl<const D: usize, const E: usize> NumberMut for Unsigned<D, E> {} unsafe impl<const D: usize, const E: usize, const L: usize> Number for Array<D, E, L> {} impl<const D: usize, const E: usize, const L: usize> NumberMut for Array<D, E, L> {} /// ## Trait methods as inherent methods, for convenience. impl<const D: usize, const E: usize, const L: usize> Array<D, E, L> { pub fn from_slice(slice: &[Digit]) -> Self { NumberMut::from_slice(slice) } pub fn try_from_slice(slice: &[Digit]) -> Result<Self> { NumberMut::try_from_slice(slice) } pub fn leading_digit(&self) -> Option<Digit> { Number::leading_digit(self) } pub fn significant_digits(&self) -> &[Digit] { Number::significant_digits(self) } pub fn to_unsigned<const M: usize, const N: usize>(&self) -> Result<Unsigned<M, N>> { Number::to_unsigned(self) } } /// Fails for D + E = 0, bound not expressable. impl<const D: usize, const E: usize> From<Digit> for Unsigned<D, E> { fn from(digit: Digit) -> Self { let mut r = Self::default(); r[0] = digit; r } } impl Short<1> { /// `const` implementation pub const fn from_digit(digit: Digit) -> Self { Self { lo: [digit], hi: [] } } pub const fn digit(&self) -> Digit { self.lo[0] } } impl<const D: usize, const E: usize> From<[Digit; D]> for Unsigned<D, E> { fn from(unsigned: [Digit; D]) -> Self { Self { lo: unsigned, hi: [0; E] } } } /// Representation of [`Unsigned`] as big-endian bytes. /// /// `RefCast` is *not* what we want, as &BigEndian is big-endian, unlike &Unsigned which is /// little-endian! /// /// Maybe rename to `BigEndianBytes` #[repr(transparent)] #[derive(Default)] // #[derive(RefCast)] pub struct BigEndian<const D: usize, const E: usize, const L: usize>(Array<D, E, L>); pub type BigEndianLong<const D: usize> = BigEndian<D, D, 1>; pub type BigEndianShort<const D: usize> = BigEndian<D, D, 1>; // #[repr(transparent)] // // #[derive(RefCast)] // pub struct BigEndianArray<const D: usize, const E: usize, const L: usize>(Array<D, E, L>); impl<const D: usize, const E: usize, const L: usize> Deref for BigEndian<D, E, L> { type Target = [u8]; fn deref(&self) -> &Self::Target { unsafe { core::slice::from_raw_parts(self.0.as_ptr() as _, core::mem::size_of::<Self>()) } } } impl<const D: usize, const E: usize, const L: usize> DerefMut for BigEndian<D, E, L> { fn deref_mut(&mut self) -> &mut Self::Target { unsafe { core::slice::from_raw_parts_mut(self.0.as_mut_ptr() as _, core::mem::size_of::<Self>()) } } } impl<const D: usize, const E: usize, const L: usize> BigEndian<D, E, L> { fn _from_slice(slice: &[u8]) -> Self { // repeat implementation, so errors show the incompatible slice lengths. let mut owned = Self::default(); owned[..slice.len()].copy_from_slice(slice); owned } pub fn as_bytes(&self) -> &[u8] { self.deref() } } // impl<const D: usize, const E: usize> BigEndian<D, E> { // /// TODO: consider truncating leading zero bytes (needs some pointer arithmetique) // pub fn as_be_bytes(&self) -> &[u8] { // unsafe { core::slice::from_raw_parts(&self.0[0] as *const Digit as _, core::mem::size_of::<Digit>() * (D + E)) } // } // } // impl<const D: usize, const E: usize, const L: usize> BigEndianArray<D, E, L> { // /// TODO: consider truncating leading zero bytes (needs some pointer arithmetique) // pub fn as_be_bytes(&self) -> &[u8] { // unsafe { core::slice::from_raw_parts(&self.0[0] as *const Digit as _, core::mem::size_of::<Digit>() * (D + E) * L) } // } // } // c'tors and such impl<const D: usize, const E: usize> Unsigned<D, E> { /// Return buffer that dereferences as big-endian bytes. pub fn to_bytes(&self) -> BigEndian<D, E, 1> { // BigEndian::from_slice(&self.clone().swap_order()) let mut big_endian = BigEndian(Array::zero()); // we need to store word such that it bytes are big-endian, whatever // the native architecture (although PC/Cortex are both little-endian). let l = self.len(); for i in 0..l { // "On big endian this is a no-op. On little endian the bytes are swapped." big_endian.0[Self::DIGITS - i - 1] = Digit::from_be(self[i]); } big_endian } } impl<const D: usize, const E: usize, const L: usize> Array<D, E, L> { /// Return buffer that dereferences as big-endian bytes. pub fn to_bytes(&self) -> BigEndian<D, E, L> { let mut big_endian = BigEndian(Array::zero()); // we need to store word such that it bytes are big-endian, whatever // the native architecture (although PC/Cortex are both little-endian). let l = self.len(); for i in 0..l { // "On big endian this is a no-op. On little endian the bytes are swapped." big_endian.0[Self::DIGITS - i - 1] = Digit::from_be(self[i]); } big_endian } } impl<const D: usize, const E: usize, const L: usize> BigEndian<D, E, L> { const CAPACITY: usize = L * (D + E); pub fn trimmed(&self) -> &[u8] { let offset = self.iter() .enumerate() .find(|(_, &x)| x != 0) .map(|(i, _)| i) .unwrap_or(Self::CAPACITY); &self[offset..] } } /// ## Trait methods as inherent methods, for convenience. impl<const D: usize, const E: usize> Unsigned<D, E> { pub fn from_slice(slice: &[Digit]) -> Self { NumberMut::from_slice(slice) } pub fn try_from_slice(slice: &[Digit]) -> Result<Self> { NumberMut::try_from_slice(slice) } pub fn leading_digit(&self) -> Option<Digit> { Number::leading_digit(self) } pub fn significant_digits(&self) -> &[Digit] { Number::significant_digits(self) } pub fn to_unsigned<const M: usize, const N: usize>(&self) -> Result<Unsigned<M, N>> { Number::to_unsigned(self) } } #[cfg(test)] mod test { use super::*; #[test] #[cfg(all(feature = "u32", not(feature = "hex-debug")))] fn debug() { let u = Short::from([0x76543210, 0xFEDCBA98]); assert_eq!(format!("{:X?}", u), "[FE, DC, BA, 98, 76, 54, 32, 10]"); } #[test] #[cfg(all(feature = "u32", feature = "hex-debug"))] fn debug() { let u = Short::from([0x76543210, 0xFEDCBA98]); assert_eq!(format!("{:X?}", u), "FEDCBA9876543210"); } #[test] fn big_endian() { let some_bytes = hex_literal::hex!("cd58cd8accf2db4c839d2553116bef81f0292b4e2d2b3f7df0e5dc8a0721398f"); let x = Short::<8>::from_bytes(&some_bytes); assert_eq!(x.to_bytes().trimmed(), some_bytes); let x = Short::<9>::from_bytes(&some_bytes); assert_eq!(x.to_bytes().trimmed(), some_bytes); } #[test] fn len() { let mut x = Short::from([0,1,0,2,0,0]); assert_eq!(x.significant_digits(), &[0,1,0,2]); assert_eq!(x.significant_digits().len(), 4); x[4] = 3; assert_eq!(x.significant_digits().len(), 5); let x = Short::from([0, 0, 0]); assert_eq!(x.significant_digits().len(), 0); } #[test] #[cfg(feature = "u32")] fn partial_eq() { use core::convert::TryFrom; let d = (1 as Digit) << 31; let p = Prime(Convenient::try_from(Short::from([17, d])).unwrap()); let u = Short::from([17, d]); assert_eq!(**p, u); } #[test] fn array() { let prod = Array { lo: [[1,2,3]], hi: [[4,5,6]] }; assert_eq!(prod.significant_digits().len(), 6); assert_eq!(prod.significant_digits(), &[1,2,3,4,5,6]); } // #[test] // fn unsigned_carry() { // let uc = UnsignedCarry::from_array_and_carry([1,2,3], 4); // assert_eq!(uc.words(), &[1,2,3,4]); // } }