1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410
//! Modular arithmetic (for moduli that are either [`Convenient`] or word-sized powers-of-two). //! //! For `Modular`, we use incompletely reduced representations internally //! (which can be implemented on a word-level), offering a complete reduction //! for external use (which needs to be implemented on a bit-level). //! //! For `Wrapping<Unsigned>`, we implement operations "$\text{mod } 2^{32(D + E)}$", //! that is, dropping all carries and borrows. //! //! This case does indeed have practical use, for instance, //! to calculate $65537^{-1} \text{ mod }(p - 1)$ via Arazi's Lemma. #![allow(unstable_name_collisions)] // for Bits::BITS #![allow(broken_intra_doc_links)] // because `rustdoc` mistakes [x] for a link use ref_cast::RefCast; #[cfg(feature = "ct-maybe")] use subtle::{Choice, ConditionallySelectable}; use zeroize::Zeroize; use crate::{Convenient, Digit, Prime, ShortPrime, Unsigned}; use crate::numbers::Bits; mod shift; mod add; mod subtract; mod montgomery; mod multiply; mod divide; // pub enum Modulus<'n, const D: usize, const E: usize> { // Odd(&'n Odd<D, E>), // PowerOfTwo, // typically, D or 2D // } /// Modular integer, corresponds to the residue class "modulo modulus". /// /// For fixed modulus, this is a ring. If the modulus is prime, this is a field. /// /// All constructors must enforce that `x < n` is the canonical residue class representative. /// /// TODO: Maybe x and n don't need to have the same size. /// E.g., would like to express x mod 2**{32*L}. /// But nothing actually larger than this. /// /// On the other hand, if `n` is substantially smaller (e.g., `e`, which has L = 1), /// then it would be nice to project `x` down to that size. #[derive(Clone, Debug)] pub struct Modular<'n, const D: usize, const E: usize> { x: Unsigned<D, E>, // ring: ModularRing<'n, D, E>, n: &'n Convenient<D, E>, } impl<const D: usize, const E: usize> Bits for Modular<'_, D, E> { const BITS: usize = <Unsigned::<D, E> as Bits>::BITS; } #[derive(Clone, Debug)] pub struct PrimeModular<'p, const D: usize, const E: usize> { pub(crate) x: Unsigned<D, E>, pub(crate) p: &'p Prime<D, E>, } impl<'p, const D: usize, const E: usize> core::ops::Deref for PrimeModular<'p, D, E> { type Target = Modular<'p, D, E>; fn deref(&self) -> &Self::Target { // &Modular { x: self.x, n: self.p.as_convenient() } unsafe { &*(self as *const Self as *const Self::Target) } } } impl<'p, const D: usize, const E: usize> core::ops::DerefMut for PrimeModular<'p, D, E> { fn deref_mut(&mut self) -> &mut Self::Target { unsafe { &mut *(self as *mut Self as *mut Self::Target) } } } impl<'p, const D: usize, const E: usize> PrimeModular<'p, D, E> { pub fn as_modular(&self) -> &Modular<'p, D, E> { &*self } pub fn as_modular_mut(&mut self) -> &mut Modular<'p, D, E> { &mut *self } pub fn zero(p: &'p Prime<D, E>) -> Self { Self { x: crate::numbers::Number::zero(), p } } /// via Fermat's little theorem pub fn inverse(&self) -> Self { let inv = self.as_modular().power(&self.p.wrapping_sub(&Unsigned::from(2))); Self { x: inv.x, p: Prime::ref_cast(inv.n) } } } #[cfg(feature = "ct-maybe")] impl<const D: usize, const E: usize> subtle::ConditionallySelectable for Modular<'_, D, E> { fn conditional_select(a: &Self, b: &Self, c: subtle::Choice) -> Self { debug_assert_eq!(a.n.as_unsigned(), b.n.as_unsigned()); Self { x: Unsigned::conditional_select(&a.x, &b.x, c), n: a.n } } } #[derive(Copy, Clone, Debug)] pub struct ModularRing<'n, const D: usize, const E: usize>(&'n Convenient<D, E>); // impl<'n, const D: usize> ModularField<'n, D> { // /// Efficiently computes the inverse of $F4$. // pub fn f4_inverse() -> ShortModular<'n, D> { // todo!(); // } // } #[derive(Clone)] pub struct ModularField<'n, const D: usize>(&'n ShortPrime<D>); impl<'n, const D: usize> ModularField<'n, D> { pub fn with_prime(p: &'n ShortPrime<D>) -> Self { Self(p) } /// Efficiently computes the inverse of $F4$. /// /// The formula is: $F_4^{-1} = \frac{1 + p*(-p^{0xFFFF}\text{ mod }65537)}{65537}$, /// where the calculation in brackets occurs pub fn f4_inverse(&self) -> ShortModular<'n, D> { let _f = self.0; let _e = crate::F4::DIGIT; // let convenient_e = Convenient(Odd(Short::<D>::from(e))); // let e_inverse = Wrapping(crate::F4).invert(); // let numerator = Wrapping::ref_cast(&-f.modulo(&convenient_e).digit_pow(e - 2)) + 1)*(Wrapping; todo!(); } } pub type ShortModular<'n, const D: usize> = Modular<'n, D, 0>; pub type LongModular<'n, const D: usize> = Modular<'n, D, D>; impl<const D: usize, const E: usize> Zeroize for Modular<'_, D, E> { fn zeroize(&mut self) { self.x.zeroize(); } } /// Montgomery representation of $[x]_{n} := x\text{ }(\text{mod }n)$, /// as $[x \cdot 2^{-32L}]_n$. /// /// This is an additive isomorphism `Modular<L>(_, n) -> Montgomery<L>(_, n)`. /// "Montgomery multiplication" means the induced ring structure. /// /// The "trick" is that reduction of excess summands after multiplication can /// be calculated by a simple right shift instead of an actual modular division. /// /// This needs to be balanced by the overhead of applying the additive isomorphism /// and its inverse, which is negligible in certain situations, e.g., calculating /// powers with large exponents. /// /// Note: As described in [Incomplete reduction in modular arithmetic (2002)][yanik-savas-koc], /// it is not necessary to reduce fully modulo `n` while calculating in the Montegomery /// representation. /// /// Also, as described in [Efficient software implementations of modular exponentiation /// (2012)][gueron], using moduli with both the top and bottom bit set is particularly convenient. /// /// [yanik-savas-koc]: https://api.semanticscholar.org/CorpusID:17543811 /// [gueron]: https://api.semanticscholar.org/CorpusID:7629541 #[allow(dead_code)] #[derive(Clone)] pub struct Montgomery<'n, const D: usize, const E: usize> { y: Unsigned<D, E>, n: &'n Convenient<D, E>, } pub type ShortMontgomery<'n, const D: usize> = Modular<'n, D, 0>; #[cfg(feature = "ct-maybe")] impl<const D: usize, const E: usize> subtle::ConditionallySelectable for Montgomery<'_, D, E> { fn conditional_select(a: &Self, b: &Self, c: subtle::Choice) -> Self { debug_assert_eq!(a.n.as_unsigned(), b.n.as_unsigned()); Self { y: Unsigned::conditional_select(&a.y, &b.y, c), n: a.n } } } /// ## Reduction of unsigned integers impl<const D: usize, const E: usize> Unsigned<D, E> { /// The associated residue class modulo n. /// /// Note that storage requirements of the residue class are the same /// as the modulus (+ reference to it), not the original integer. /// /// This uses incomplete reduction ([`Self::partially_reduce`]) for efficiency. pub fn modulo<'n, const F: usize, const G: usize>(&self, n: &'n Convenient<F, G>) -> Modular<'n, F, G> { Modular { x: self.reduce(n), n } } pub fn modulo_prime<'p, const F: usize, const G: usize>(&self, p: &'p Prime<F, G>) -> PrimeModular<'p, F, G> { PrimeModular { x: self.reduce(p), p } } ///// A noncanonical representative of the associated residue class modulo n. ///// ///// The "incomplete reduction" modulo $w^{D + E}$, where $w$ is the digit size ///// $2^{\text{BITS}}$, i.e., the word size of the machine. ///// ///// Cf. [`Modular`]. //pub fn partially_reduce<const F: usize, const G: usize>(&self) -> Unsigned<F, G> { // use crate::numbers::NumberMut; // Unsigned::from_slice(&self[..(F + G)]) //} /// The canonical (completely) reduced representative of the associated residue class modulo $n$. /// /// Cf. [`Modular`]. pub fn reduce<const F: usize, const G: usize>(&self, n: &Unsigned<F, G>) -> Unsigned<F, G> { let remainder = self % n; // assert!(!remainder.is_zero()); remainder } // /// For convenient moduli, complete reduction is just incomplete reduction followed // /// by a conditional subtraction. // pub fn conveniently_reduce<const F: usize, const G: usize>(self, n: &Convenient<F, G>) -> Unsigned<F, G> { // self.modulo(n).canonical_lift() // } } impl<'n, const D: usize, const E: usize> Modular<'n, D, E> { pub fn zero(n: &'n Convenient<D, E>) -> Self { Self { x: crate::numbers::Number::zero(), n } } pub fn digit_pow(&self, _exponent: crate::Digit) -> Self { todo!(); } /// The canonical representative of this residue class. /// /// This is like [`lift`][lift] in GP/PARI /// /// By virtue of our moduli's convenience, this is just a conditional subtraction. /// [lift]: https://pari.math.u-bordeaux.fr/dochtml/html/Conversions_and_similar_elementary_functions_or_commands.html#se:lift // pub fn lift<const L: usize>(self) -> Unsigned<L> { // // TODO: if L < N (or rather, self.modulo.len()), then lift and project maybe? nah // self.x.into_unsigned() pub fn canonical_lift(&self) -> Unsigned<D, E> { #[cfg(not(feature = "ct-maybe"))] { let residue = self.x.clone(); if self.x >= **self.n { residue.wrapping_sub(self.n) } else { residue } } #[cfg(feature = "ct-maybe")] { use subtle::ConstantTimeLess; let must_reduce = !self.x.ct_lt(self.n.as_unsigned()); Unsigned::<D, E>::conditional_select( &self.x, &self.x.wrapping_sub(self.n), must_reduce, ) } } /// Or non-canonical lift pub fn residue(&self) -> &Unsigned<D, E> { &self.x } pub fn to_montgomery(&self) -> Montgomery<'n, D, E> { montgomery::to_montgomery(self) } // pub fn to_the(self, exponent: & impl Into<Unsigned<L>>) -> Self { pub fn power<const F: usize, const G: usize>(&self, exponent: &Unsigned<F, G>) -> Self { // TODO: If exponent is a small prime, special-case. // self.to_montgomery().power(exponent).to_modular() self.to_montgomery().power(exponent).to_modular() } } impl<'n, const D: usize, const E: usize> Montgomery<'n, D, E> { pub fn to_modular(&self) -> Modular<'n, D, E> { montgomery::to_modular(self) } pub fn one(&self) -> Self { Self { y: super::arithmetic::montgomery::R_mod_p(&self.n), n: self.n } } pub fn power<const F: usize, const G: usize>(&self, exponent: &Unsigned<F, G>) -> Self { let mut x = self.one(); for i in (0..(F + G)).rev() { for j in (0..Digit::BITS).rev() { x = &x * &x; #[cfg(not(feature = "ct-maybe"))] { if (exponent[i] & (1 << j)) != 0 { x *= self; } } #[cfg(feature = "ct-maybe")] { x = Self::conditional_select( &x, &(&x * self), Choice::from(((exponent[i] >> j) & 1) as u8), ) } } } x } } impl<const D: usize, const E: usize> From<Modular<'_, D, E>> for Unsigned<D, E> { fn from(class: Modular<'_, D, E>) -> Self { class.canonical_lift() } } #[repr(transparent)] #[derive(Clone, Debug, Default, PartialEq, RefCast)] /// Intentionally-wrapped arithmetic. /// /// We can't use `core::num::Wrapping` due to type coherence clashing /// with our usage requirements. /// /// The idea is that `T` is [`Number`], and we wrap around $2^N$ where `N = T::BITS`. pub struct Wrapping<T>(pub T); #[cfg(test)] mod test { use crate::fixtures::*; #[test] fn power() { let a = q256().into_unsigned(); // println!("a = {:?}", a); let p = p256().into_convenient(); // println!("p = {:?}", **p); let modular = a.modulo(&p); // sanity assert!(&a <= p.as_unsigned()); assert_eq!(modular.x, a); // println!("modular.x = {:?}", modular.x); // println!("modular.n = {:?}", **modular.n); assert_eq!(modular.canonical_lift(), a); // a^1 let itself = modular.power(&Short64::from(1)); assert_eq!(itself.canonical_lift(), a); // a^2 let squared = modular.power(&Short64::from(2)); // GP/PARI: `hex(lift(Mod(q, p)^2))` let expected = Short256::from_bytes(&hex!( "31d9c0a7a9c089c4a8086da5fe743c1626423611222b7919f843e58138913299")); assert_eq!(squared.canonical_lift(), expected); // a^37 let result = modular.power(&Short64::from(37)); let expected = Short256::from_bytes(&hex!( "731c4d5e69ac480ea2874bc44e05e99d2827a5b651f3ab199945fd1635968a9e")); assert_eq!(result.canonical_lift(), expected); // a^F4 let result = modular.power(&Short64::from(crate::F4::DIGIT)); let expected = Short256::from_bytes(&hex!( "274f34228885e3cbc71cc20bcc25618d2589656efd14557a12b02ff89920d17a")); assert_eq!(result.canonical_lift(), expected); // a^c let c = c256(); let result = modular.power(&c); let expected = Short256::from_bytes(&hex!( "a0aa5df2567cc062788a64714276c5373f2240589874d2143401dd9c3c2efae1")); assert_eq!(result.canonical_lift(), expected); } }