1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448
use core::{convert::TryInto, mem::MaybeUninit};
use rand_core::{CryptoRng, RngCore};
use zeroize::{Zeroize, Zeroizing};
#[cfg(feature = "prehash")]
use crate::sha256;
use crate::{Error, Result};
/// NIST P-256 secret key.
///
/// The internal representation is as little-endian (native) words.
#[derive(Clone, Zeroize)]
pub struct SecretKey([u32; 8]);
/// NIST P-256 public key.
#[derive(Clone, Debug)]
pub struct PublicKey {
x: [u32; 8],
y: [u32; 8],
}
/// NIST P-256 keypair.
#[derive(Clone)]
pub struct Keypair {
/// Public key of the keypair
pub public: PublicKey,
/// Secret key of the keypair
pub secret: SecretKey,
}
/// NIST P-256 signature.
///
/// TODO: It seems we might be able to use the `p256` machinery for this,
/// instead of reimplementing it ourselves.
#[derive(Clone, Debug)]
pub struct Signature {
r: [u32; 8],
s: [u32; 8],
}
/// Outcome of ECDH key agreement.
///
/// The x-coordinate of the multiplication of a secret key and a public key,
/// represented as big-endian integer.
#[derive(Clone, Zeroize)]
pub struct SharedSecret([u8; 32]);
impl Keypair {
/// Generate a random `Keypair`.
///
/// The implementation uses rejection sampling.
pub fn random(rng: impl CryptoRng + RngCore) -> Self {
let mut keypair = Keypair {
public: PublicKey {
x: [0u32; 8],
y: [0u32; 8],
},
secret: SecretKey([0u32; 8]),
};
let mut rng = rng;
loop {
rng.fill_bytes(unsafe {
core::mem::transmute::<&mut [u32; 8], &mut [u8; 32]>(&mut keypair.secret.0)
});
let valid = unsafe {
p256_cortex_m4_sys::p256_keygen(
&mut keypair.public.x[0] as *mut _,
&mut keypair.public.y[0] as _,
&keypair.secret.0[0] as _,
)
};
if valid {
return keypair;
}
}
}
}
impl SecretKey {
/// Generate a random `SecretKey`.
///
/// The implementation uses rejection sampling.
pub fn random(rng: impl CryptoRng + RngCore) -> Self {
let mut secret = SecretKey([0u32; 8]);
let mut rng = rng;
loop {
rng.fill_bytes(unsafe {
core::mem::transmute::<&mut [u32; 8], &mut [u8; 32]>(&mut secret.0)
});
let valid =
unsafe { p256_cortex_m4_sys::P256_check_range_n(&secret.0[0] as *const u32) };
if valid {
return secret;
}
}
}
/// Verifies that there are 32 bytes that correspond to a big-endian integer in the range 1..=n-1.
pub fn from_bytes(bytes: impl AsRef<[u8]>) -> Result<Self> {
let bytes = bytes.as_ref();
if bytes.len() != 32 {
return Err(Error);
}
let mut secret = SecretKey([0u32; 8]);
unsafe {
p256_cortex_m4_sys::p256_convert_endianness(
&mut secret.0[0] as *mut u32 as *mut _,
&bytes[0] as *const u8 as *const _,
32,
)
};
if !unsafe { p256_cortex_m4_sys::P256_check_range_n(&secret.0[0] as *const u32) } {
return Err(Error);
}
Ok(secret)
}
// /// Verifies that there are 8 words that correspond to a little-endian integer in the range 1..=n-1.
// pub fn from_words(bytes: impl AsRef<[u32]>) -> Option<Self> {
// if bytes.as_ref().len() != 8 {
// return None
// }
// if !unsafe { p256_cortex_m4_sys::P256_check_range_n(
// &bytes.as_ref()[0] as *const u32,
// ) } {
// return None
// }
// Some(Self(bytes.as_ref().try_into().ok()?))
// }
#[allow(unused_unsafe)]
/// Convert endianness to obtain the big-endian representation of the secret scalar as 32 bytes.
///
/// "unsafe" because the caller is responsible for keeping the value secret.
pub unsafe fn to_bytes(&self) -> [u8; 32] {
let mut big_endian = [0u8; 32];
unsafe {
p256_cortex_m4_sys::p256_convert_endianness(
&mut big_endian[0] as *mut u8 as *mut _,
&self.0[0] as *const u32 as *const _,
32,
)
};
big_endian
}
/// Calculate associated public key.
pub fn public_key(&self) -> PublicKey {
let mut public = PublicKey {
x: [0u32; 8],
y: [0u32; 8],
};
// NB: We already know we are a valid secret key
unsafe {
p256_cortex_m4_sys::p256_keygen(
&mut public.x[0] as *mut _,
&mut public.y[0] as _,
&self.0[0] as _,
)
};
public
}
/// Non-deterministic signature on message assumed to be hashed, if needed.
///
/// Internally, draws 256-bit `k` repeatedly, until signing succeeds.
pub fn sign_prehashed(
&self,
prehashed_message: &[u8],
rng: impl CryptoRng + RngCore,
) -> Signature {
let mut signature = Signature {
r: [0u32; 8],
s: [0u32; 8],
};
let mut k = Zeroizing::<[u32; 8]>::new([0u32; 8]);
let mut rng = rng;
loop {
rng.fill_bytes(unsafe { core::mem::transmute::<&mut [u32; 8], &mut [u8; 32]>(&mut k) });
if unsafe {
p256_cortex_m4_sys::p256_sign(
&mut signature.r[0] as *mut u32,
&mut signature.s[0] as *mut u32,
&prehashed_message[0] as *const u8,
prehashed_message.len() as u32,
&self.0 as *const u32,
&k[0] as *const u32,
)
} {
return signature;
}
}
}
#[cfg(feature = "prehash")]
#[cfg_attr(docsrs, doc(cfg(feature = "prehash")))]
/// Non-deterministic signature on message, which is hashed with SHA-256 first.
pub fn sign(&self, message: &[u8], rng: impl CryptoRng + RngCore) -> Signature {
let prehashed_message = sha256(message);
self.sign_prehashed(prehashed_message.as_ref(), rng)
}
/// ECDH key agreement.
pub fn agree(&self, other: &PublicKey) -> SharedSecret {
let mut shared = SharedSecret([0u8; 32]);
// NB: By construction, `other` is a valid public key, so we do not need
// to check the return value.
unsafe {
p256_cortex_m4_sys::p256_ecdh_calc_shared_secret(
&mut shared.0[0] as *mut _,
&self.0[0] as *const _,
&other.x[0] as *const _,
&other.y[0] as *const _,
)
};
shared
}
}
impl PublicKey {
/// Decode assuming `bytes` is x-coordinate then y-coordinate, both big-endian 32B arrays.
///
/// In other words, the uncompressed SEC1 format, without the leading 0x04 byte tag.
pub fn from_untagged_bytes(bytes: &[u8]) -> Result<Self> {
if bytes.len() != 64 {
return Err(Error);
}
let mut sec1_bytes = [4u8; 65];
sec1_bytes[1..].copy_from_slice(bytes);
Self::from_sec1_bytes(&sec1_bytes)
}
/// Decode `PublicKey` (compressed or uncompressed) from the
/// `Elliptic-Curve-Point-to-Octet-String` encoding in [SEC 1][sec-1] (section 2.3.3)
///
/// This is the left-inverse of both `to_compressed_bytes` and `to_uncompressed_bytes`.
///
/// [sec-1]: http://www.secg.org/sec1-v2.pdf
pub fn from_sec1_bytes(bytes: &[u8]) -> Result<Self> {
// NB: https://doc.rust-lang.org/std/mem/union.MaybeUninit.html#initializing-a-struct-field-by-field
let mut public = PublicKey {
x: [0u32; 8],
y: [0u32; 8],
};
if unsafe {
p256_cortex_m4_sys::p256_octet_string_to_point(
&mut public.x[0] as *mut _,
&mut public.y[0] as *mut _,
&bytes[0] as *const _,
bytes.len() as u32,
)
} {
return Ok(public);
} else {
return Err(Error);
}
}
/// Raw encoding, x-coordinate then y-coordinate.
pub fn to_untagged_bytes(&self) -> [u8; 64] {
self.to_uncompressed_sec1_bytes()[1..].try_into().unwrap()
}
/// Compressed encoding: `02 || Px` if Py is even and `03 || Px` if Py is odd
pub fn to_compressed_sec1_bytes(&self) -> [u8; 33] {
let mut bytes = MaybeUninit::<[u8; 33]>::uninit();
unsafe {
p256_cortex_m4_sys::p256_point_to_octet_string_compressed(
bytes.as_mut_ptr() as *mut _,
&self.x[0] as *const _,
&self.y[0] as *const _,
);
bytes.assume_init()
}
}
/// Uncompressed encoding: `04 || Px || Py`.
pub fn to_uncompressed_sec1_bytes(&self) -> [u8; 65] {
let mut bytes = MaybeUninit::<[u8; 65]>::uninit();
unsafe {
p256_cortex_m4_sys::p256_point_to_octet_string_uncompressed(
bytes.as_mut_ptr() as *mut _,
&self.x[0] as *const _,
&self.y[0] as *const _,
);
bytes.assume_init()
}
}
/// Big-endian representation of x-coordinate.
pub fn x(&self) -> [u8; 32] {
self.to_uncompressed_sec1_bytes()[1..33].try_into().unwrap()
}
/// Big-endian representation of x-coordinate.
pub fn y(&self) -> [u8; 32] {
self.to_uncompressed_sec1_bytes()[33..].try_into().unwrap()
}
/// Verify signature on message assumed to be hashed, if needed.
#[must_use = "The return value indicates if the message is authentic"]
pub fn verify_prehashed(&self, prehashed_message: &[u8], signature: &Signature) -> bool {
unsafe {
p256_cortex_m4_sys::p256_verify(
&self.x[0] as *const u32,
&self.y[0] as *const u32,
&prehashed_message[0] as *const u8,
prehashed_message.len() as u32,
&signature.r[0] as *const u32,
&signature.s[0] as *const u32,
)
}
}
/// Verify signature on message, which is hashed with SHA-256 first.
#[cfg(feature = "prehash")]
#[cfg_attr(docsrs, doc(cfg(feature = "prehash")))]
#[must_use = "The return value indicates if the message is authentic"]
pub fn verify(&self, message: &[u8], signature: &Signature) -> bool {
let prehashed_message = sha256(message);
self.verify_prehashed(prehashed_message.as_ref(), signature)
}
}
impl Signature {
/// Big-endian representation of r.
fn r(&self) -> [u8; 32] {
let mut r = MaybeUninit::<[u8; 32]>::uninit();
unsafe {
p256_cortex_m4_sys::p256_convert_endianness(
r.as_mut_ptr() as *mut u8 as *mut _,
&self.r[0] as *const u32 as *const _,
32,
);
r.assume_init()
}
}
/// Big-endian representation of s.
fn s(&self) -> [u8; 32] {
let mut s = MaybeUninit::<[u8; 32]>::uninit();
unsafe {
p256_cortex_m4_sys::p256_convert_endianness(
s.as_mut_ptr() as *mut u8 as *mut _,
&self.s[0] as *const u32 as *const _,
32,
);
s.assume_init()
}
}
/// Decode signature as big-endian r, then big-endian s, without framing.
///
/// Necessarily, bytes must be of length 64, and r and s must be integers
/// in the range 1..=n-1, otherwise decoding fails.
pub fn from_untagged_bytes(bytes: &[u8]) -> Result<Self> {
if bytes.len() != 64 {
return Err(Error);
}
// NB: https://doc.rust-lang.org/std/mem/union.MaybeUninit.html#initializing-a-struct-field-by-field
let mut signature = Signature {
r: [0u32; 8],
s: [0u32; 8],
};
unsafe {
p256_cortex_m4_sys::p256_convert_endianness(
&mut signature.r[0] as *mut u32 as *mut _,
&bytes[0] as *const u8 as *const _,
32,
)
};
let valid_r =
unsafe { p256_cortex_m4_sys::P256_check_range_n(&signature.r[0] as *const u32) };
unsafe {
p256_cortex_m4_sys::p256_convert_endianness(
&mut signature.s[0] as *mut u32 as *mut _,
&bytes[32] as *const u8 as *const _,
32,
)
};
let valid_s =
unsafe { p256_cortex_m4_sys::P256_check_range_n(&signature.r[0] as *const u32) };
if valid_r && valid_s {
Ok(signature)
} else {
Err(Error)
}
}
// /// Decode signature from ASN.1 DER
// #[cfg(feature = "sec1-signatures")]
// #[cfg_attr(docsrs, doc(cfg(feature = "sec1-signatures")))]
// pub fn from_sec1_bytes(bytes: &[u8]) -> Result<Self> {
// todo!();
// }
/// Encode signature from big-endian r, then big-endian s, without framing.
pub fn to_untagged_bytes(&self) -> [u8; 64] {
let mut bytes = [0u8; 64];
bytes[..32].copy_from_slice(&self.r());
bytes[32..].copy_from_slice(&self.s());
bytes
}
/// Encode signature as ASN.1 DER, returning length.
///
/// This means interpreting signature as a SEQUENCE of (unsigned) INTEGERs, as defined
/// under the name of `ECDSA-Sig-Value` in [SEC 1][sec-1], section C.5.
///
/// [sec-1]: http://www.secg.org/sec1-v2.pdf
#[cfg(feature = "sec1-signatures")]
#[cfg_attr(docsrs, doc(cfg(feature = "sec1-signatures")))]
pub fn to_sec1_bytes(&self, buffer: &mut [u8; 72]) -> usize {
let r = self.r();
let s = self.s();
let signature = DerSignature {
r: der::asn1::UintRef::new(&r).unwrap(),
s: der::asn1::UintRef::new(&s).unwrap(),
};
use der::Encode;
let l = signature.encode_to_slice(buffer.as_mut()).unwrap().len();
l
}
}
#[cfg(feature = "sec1-signatures")]
#[cfg_attr(docsrs, doc(cfg(feature = "sec1-signatures")))]
#[derive(Copy, Clone, Debug, Eq, PartialEq, der::Sequence)]
struct DerSignature<'a> {
pub r: der::asn1::UintRef<'a>,
pub s: der::asn1::UintRef<'a>,
}
impl SharedSecret {
/// The secret (big-endian x-coordinate)
pub fn as_bytes(&self) -> &[u8; 32] {
&self.0
}
}